Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth
نویسندگان
چکیده
S U M M A R Y Accurate models of the magnetospheric field during magnetically quiet times are essential for high-resolution mapping of core field dynamics, mantle and ocean induction, crustal fields and ionospheric currents. Satellite data sampled at low-Earth orbit allow for a separate determination of the external contributions from currents in the magnetosphere. We have used Ørsted and CHAMP data from the years 1999–2004 to investigate this field component. In contrast to earlier studies, the field is decomposed here into contributions from sources in the solar-magnetic (SM) frame and those in the geocentric-solar-magnetospheric (GSM) frame. For an observer on the Earth, stable fields in those frames generate different diurnal and annual variations which, in response, induce currents in the subsurface. All of these effects have been modelled here. Our primary findings are: in the GSM frame, there is a dominant constant magnetic field of about 13 nT, pointing due southward. This field component is attributed to the quiet-time tail current system. The interplanetary magnetic field (IMF) contributes to the near-Earth field with 10 per cent of its Bx and about 25 per cent of its By component. For the SM frame, we obtain a constant field of 7.6 nT and a variable part which can be parametrized by the DST index. The field in SM is attributed to the combined effect of the magnetopause and ring current. A comparison of the external field variations, predicted by our satellite-derived model, with the measurements of five latitudinally distributed ground observatories shows a remarkable agreement.
منابع مشابه
Evaluation of Extremely Low Frequency (ELF) Electromagnetic Fields and Their Probable Relationship with Hematological Changes among Operators in Heavy Metal Industry
Introduction: It is important that biological and health effects from the induction of currents and fields in the body by extremely low frequency (ELF) fields are fully explored to determine the effects produced at the molecular, cellular and organ levels. The objective of this study was to evaluate the intensity of ELF electromagnetic fields and its probable relationship with hematological cha...
متن کاملNumerical study of induction heating by micro / nano magnetic particles in hyperthermia
Hyperthermia is one of the first applications of nanotechnology in medicine by using micro/nano magnetic particles that act based on the heat of ferric oxide nanoparticles or quantum dots in an external alternating magnetic field. In this study, a two-dimensional model of body and tumor tissues embedded is considered. Initially, the temperature distribution is obtained with respect to tumor pro...
متن کاملLocal time effects in satellite estimates of electromagnetic induction transfer functions
[1] The current satellite magnetic missions offer new opportunities to determine the electrical conductivity of the Earth. However, satellites are nearly stationary in local time and therefore sample the inducing and induced fields quite differently than geomagnetic observatories, which rotate with the Earth. We show that estimates of induction transfer functions obtained from CHAMP magnetic da...
متن کاملMagneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk
In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theo...
متن کاملA Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کامل